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Abstract. An outline of a quantum approach to multi-kink profiles as coherent states in a 
ferromagnetic chain is given. Relying on the continuum and harmonic approximation the 
influence of the out-of-plane fluctuations on the stability and dynamics of multi-kink 
structures in a finite chain is studied and compared with the stability and dynamics of 
single-kink profiles in an infinite chain. Even in the harmonic approximation, very few 
modes are diagonal. n e  multi-kink structure does not exhibit a 'zero-frequency' Goldstone 
mode. This is a consequence of the out-of-ptane fluctuations. 

1. Introduction 

Kink-like profiles, that can be described by the sine-Gordon equation, have received 
much attention during the last decade, especially in their relation to the non-linear 
excitations of one-dimensional ferromagnets with an easy plane. The properties of 
the kinks rely on the mapping (Mikeska 1978) of the magnetic chain on the sine-Gordon 
system and the thermodynamical and response functions of the sine-Gordon system. 
These functions can be calculated classically (Currie er a1 1980) using transfer matrices 
and are simulated for the classical model (Schneider and Stoll 1980). The heat capacity 
data of CsNiF, (Ramirez and Wolf 1982) and [C6H,,NH,]CuBr, (referred to as C H A B )  

(Kopinga et a1 1984b, Tinus et a1 1985) have been interpreted in terms of the sine- 
Gordon model, at least in a certain temperature and external field range. The inverse 
spin-lattice relaxation time, which is proportional to the soliton density (Goto 1983, 
Benner er a1 1984, Kopinga et a1 1984a), and neutron scattering measurements of the 
central peak (Kjems and Steiner 1978, Kakurai er a1 1984) have also been interpreted 
in terms of this model. This interpretation yields a renormalisation of the so-called 
soliton rest energy. However, there has always been some controversy about this 
interpretation as stated by several authors (Loveluck et a1 1981, Reiter 1981, Pini and 
Rettori 1984, Chui and Ma 1983). Therefore, it is not obvious that the data actually 
support evidence for the presence of this particular kind of kink in these experimental 
systems. 

The mapping of the easy plane ferromagnet on the sine-Gordon model assumes 
an extreme anisotropy which is, as such, not present in the real system. Investigations 
of the influence of the lack of extreme anisotropy have led to the prediction of 
instabilities at a critical magnetic field (Kumar 1982, Magyari and Thomas 1982). 
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However, the measurement of the inverse spin-lattice relaxation time (Benner et a1 
1984) shows a characteristic Arrhenius law with the renormalised soliton rest energy 
as an activation energy and  does not show any marked deviation from this behaviour 
at the predicted critical field. 

One of the crucial approximations in the mapping of the easy plane ferromagnetic 
chain on the sine-Gordon model is that the spin dynamics arise from a classical vector, 
obeying Poisson brackets analogous to the spin commutation relations. It has been 
conjectured that a considerable part of the deviation between the observed value of 
the soliton activation energy and the calculated soliton energy in a classical model is 
of quantum nature. Calculations made by Maki (1981) on the basis of the quantum 
sine-Gordon model and  Mikeska (1982) on the basis of a more general quantum model 
predicted a reduction to the soliton rest energy. In these approaches the most important 
corrections to the soliton energy come from the zero-point quantum fluctuations and  
from normal ordering. Both calculations rely on methods used for the quantisation 
of classical field theories (Dashen et a1 1975). 

In the present calculation we will neglect this aspect of the problem. In relation 
to some experimental observations, it is found that the quantum sine-Gordon model 
is not superior to the ‘classical’ sine-Gordon model (Fowler et a1 1984). Furthermore, 
for an antiferromagnetic chain it is shown (Wright et a1 1985) that the renormalisation 
crucial to obtain the reduction of the soliton energy leads also to a reduction of the 
linear excitations of the system. It is necessary to take the out-of-plane fluctuations, 
which are neglected in the quantum sine-Gordon model, into account in order to 
obtain agreement with the measured values of the energy of the linear excitations 
(Heilmann et a1 1981). Both arguments suggest that it is more important to consider 
the out-of-plane fluctuations on the same level as the in-plane fluctuations than to take 
the renormalisations due  to differences in zero-point quantum fluctuations and normal 
ordering into account. 

In this paper, we study the quantum fluctuations around a coherent state for an  
easy plane ferromagnet relying on well established quantum methods. Instead of using 
a semiclassical theory to obtain the kinks in the system, we have performed a canonical 
transformation that allows the introduction of site-dependent quantisation axes 
(Moussa and Villain 1976, 1977, Barnes 1981, Fischer and Heber 1985) in the easy 
plane. The transformed Hamiltonian is then calculated and the continuum approxima- 
tion is made. The static sine-Gordon equation turns out to be the stationarity condition 
for the transformed Hamiltonian. Using a general solution of this equation the 
harmonic part of the Hamiltonian is further analysed: first we give a short review of 
the possible solutions of the static sine-Gordon equation. For the infinite chain with 
a single kink the harmonic spectrum is calculated. For the multi-kink solutions on a 
finite support we do  not calculate the complete spectrum, which is analogous to the 
bandstructure of a one-dimensional model, but we solve the eigenvalue problem in 
some special points and  indicate the differences between the single-kink and  multi-kink 
profiles. In the last section we discuss the method of calculation and give the con- 
clusions. 

2. Quantum theory of kinks and their fluctuation 

In this section, we will briefly indicate how the spin algebra can be simplified at the 
expense of complicating the Hamiltonian. We will then introduce a canonical transfor- 
mation which allows us to describe a profile in the spin chain as a coherent state. 
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Subsequently we will discuss the linear excitations of the chain relying on the harmonic 
and continuum approximation for the quantum fields. 

2.1. The Villain representation 

We assume that the ferromagnetic chain can be described by the following Hamiltonian: 

H = - J Z , S ' , S ~ + l + A C , ( S ' , ) 2 - J Z ~ ~ ( S ~ S ~ + l + S ~ + , S ~ ) - g ~ ~ H ~ ; , ~ ( S ~ + S ~ ) .  ( 1 )  

The single-ion anisotropy originates from the term proportional to the constant A. I t  
is commonly employed to induce an energetically favourable easy X Y  plane. The 
external magnetic field H introduces an additional anisotropy in this plane. Single-ion 
anisotropy, which is typical for CsNiF3, is not the only mechanism that can introduce 
an easy plane in the system. For C H A B  the X Y  character of the Hamiltonian originates 
from the exchange anisotropy. Our calculations are performed for a system with 
single-ion anisotropy. The methods, however, are equally well applicable to a system 
with exchange anisotropy, but require somewhat more elaborate calculations. 

The strong non-linearity in the equations of motion generated by (1) are introduced 
by the spin algebra. In order to transfer the non-linear behaviour from the spin algebra 
to the Hamiltonian a more convenient operator representation of this algebra is chosen. 
Among the many possibilities (Mead and Papanicolaou 1983) we have chosen the 
representation proposed by Villain (1974) and analysed more recently by Haldane 
(1983). In this representation the Hamiltonian transforms to the following expression: 

H = - ~ [ s ( s +  i ) l ~ , ~ c o s ( ~ ~  -@.,+,)+gCLBH/{J[s(s+ i ) l i / * }  cos(q,)n 

-JZ,,s:sz,+, -JZ,fSi[cos(@, - @ n + l )  +cos(@,,-, -@,,) 

+ g p , H / { J [ S ( S +  l)]''*} cos(@,,) -2A/J]Si  + higher-order terms. ( 2 )  

For a derivation of the higher-order terms in equation ( 2 )  we refer to Wright et a1 
(1985). From the calculation of these authors the higher-order terms can be obtained 
to the sixth order in S' by a simple transformation of their expression. I t  should be 
noted that Si  and @,, will be treated as canonical adjoint operators with the approxima- 
tive commutation relation: 

[@,,, Sk] =is,,,,, (3) 

F(S' , )  exp(*i@,,) =exp(* i@n)F(Si+  1) (4) 

instead of operators with the following correct Weyl relation: 

where F ( x )  is an arbitrary function of x. In this respect, we wish to remark that (3) 
is invariant under the rescaling of @,, and Si used in the quantum sine-Gordon model 
while (4) does not exhibit this scaling property. 

2.2. A canonical transformation 

The non-linear excitations of (2)  are usually studied in a semiclassical approach: one 
considers ( 2 )  as a classical system, one obtains the non-linear solutions and then the 
small oscillations around these solutions are quantised. This procedure is equivalent 
to the functional integration approach (Dashen et al 1975) and has served as a basis 
for most quantum calculations on this system and related systems (Maki 1981, Mikeska 
1982, Fogedby et al 1985). Recent studies of Klauder and Daubechies (1984) and 
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Mead and Papanicolaou (1982) have shown how one can use spin coherent states to 
obtain functional integrals for quantum spin systems directly, without invoking a 
‘classical’ counterpart of the system. Because there is a close relationship between 
coherent states and the canonical transformations of the displaced oscillator type, we 
will use such transformations to introduce a site-dependent function q,, into the 
Hamiltonian (2) by displacing the operator @“ via the canonical transformation with 
the following generator: 

U = iXnS:qn. ( 5 a )  

exp(- U)@,, exp( U )  = @” - qn.  ( 5 b )  

The operator Q n  transforms then as follows: 

This result is directly obtained from the Weyl relation. Before the transformation the 
operator is related to an angle which reference is the X axis for all the sites of the 
chain. The introduction of qn gives the On operator a site-dependent reference axis 
rotated over the angle qn for that site. The transformation ( 5 )  introduces a site- 
dependent quantisation axis into the description of the chain. 

The transformed Hamiltonian can be decomposed as a sum of terms containing a 
definite number of operators as indicated by the superscript of H 

e x p ( - ~ ) H  exp( U )  = H’+ H I +  H’+ H-’+ H ~ + .  . . . ( 6 )  

( 7 )  

+ g p B H / { J [ S ( S +  1)11’2} sin(qn)) ( 8 )  

The first three terms in this decomposition are given below. 

H o  = - J [ S ( S  + 1 ) ] I n  (cos(c~n - q n + l )  + g p B H / { J [ S ( S  + 1 
H ’ =  - J I S ( S + ~ ) ] ~ n @ n ( s i n ( q n - q , + l ) - s i n ( q n ~ ,  -q , )  

COS(CP, 1) 

H 2 =  J [ S ( S +  1 ) I x n t ( a n ) 2 ( c o s ( ~ n  - p n + l )  +cos(c~n-l-qn) 

+ g p B H / { J [ S ( S +  1)1”’} cos(~n))-@non+l cos(qn - ( O n + l )  

+ JZnf(S:)’(cos(vn - ( ~ n + l )  +cos( q n -  I - ( ~ n  ) 

+ g p B H / { J [ S (  S+ 1)]1’2} COS(C~,)  + 2 A / J )  - S:SZ,+I. ( 9 )  
It is seen that HI becomes identically zero if qn satisfies the following difference 
equation 

(10) 
In the continuum approximation, the equation equivalent to (10) leads to the static 
part of the sine-Gordon equation 

sin(qn - q n + 1 )  -sin(qn-1 - p n ) + g @ e H / I J [ S ( S +  1)11’2} sin(q,) = 0. 

q”(x)  = m 2  sin(q(x))  (11) 

m’= g p B H / { J a 2 [ S ( S +  (12) 

where ” denotes the second derivative with respect to x and m is given by the well 
known expression 

where a is the distance between the magnetic ions. The Hamiltonian HI (8)  can be 
interpreted as that part of the energy operator which expresses the energy due to the 
site-dependent force applied on the in-plane spin component via the angle operator 
@,,. For a solution of (10) this force is zero and therefore the solutions of (10) can 
be used to classify the metastable states of the total Hamiltonian. As we shall see 
further the spectrum of HZ will also be important for each of these solutions, because 
the stability of the coherent state depends on it. 
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2.3. The Hamiltonian in the continuum approximation 

In  the remainder of the paper, we will use the continuum approximation. Making this 
approximation clearly restricts the possible solutions of (10): only those solutions 
where cpn changes smoothly over a large number of cells are taken into account. As 
shown in a recent paper by Etrich et a1 (1985) on an equivalent classical model the 
influence of the lattice is important because (10) also has other types of solutions and 
the discreteness of the lattice influences their stability. This restricts our approach to 
phenomena that vary slowly along the chain. A further analysis of this point will be 
given in the discussion. 

Introducing dimensionless units y = mx, H o  and H2 in the continuum approxima- 
tion are as follows: 

H O = - N { JS ( S + 1 ) + gp B H [ S ( S + 1 ) ] 

+ J S ( S +  1)ma I d y [ f ( ~ ‘ ) ~ + 2  sin2(cp/2)] 

H 2 = J S ( S + l ) m a  dy[f(@)2+f@2 cos(cp)] 

The ~ ( y )  denoted by cp in the equations is now a solution of the dimensionless static 
sine-Gordon equation obtained from ( 1 1 )  by changing units. N is the number of 
magnetic sites in the chain, the first term of (13 )  is the classical ground state and the 
second term expresses the energy needed to shift the operator @ over an angle cp all 
over the chain. Requiring that Ho is extreme is equivalent to (10) being satisfied. The 
anisotropy term in (14) is given by 6 =2A/Jm2a2. We have denoted the continuum 
counterpart of the operator S i  by S. The integrals extend over the complete chain 
length. For the derivation of (14) it is assumed that the fields vanish in the endpoints. 
In  the same approximation the higher-order terms are 

H3=JS(S+1)ma-  dy[03  sin(cp)]+Jma dy[S@Scp’] 
3 !  ’I I 

H 4 =  - J S ( S +  1)ma- d y [ @ 4 ~ ~ ~ ( c p ) ] - J m a  dy[S(f(@)’+~@’cos(cp))S] 
4! ‘ I  I 

I - Jma/S( S + 1 )  dy[S(f(S’)2 -is2 cos(cp))S]. (16) 

Before we discuss the excitations generated by H2 it should be mentioned that if S 
and @ are written in creation and annihilation operators and we put H’ and H4 in 
normal order, this procedure would give rise to additional terms in H’ coming from 
H 3 ,  in H2 coming from H4 and so on. As explained in the introduction we will not 
consider this procedure which leads to a self-consistent calculation or to diagrammatic 
expansions of the relevant quantities. 

2.4. The harmonic spectrum 

The harmonic part of the transformed Hamiltonian leads to the following coupled 
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equations for the quantum fields @ ( y )  and S ( y ) :  
6 ( y )  = 2JmaHsS(y) (17 )  
S ( y )  = -2JS(S+ l ) m a H , @ ( y )  (18 )  

H~ =+p’+$+f[l  -(cp’)*-2 sin2(cp/2)] (19) 
H ,  = fp2 + f[ 1 - 2 sin2( cp/2)] (20) 

where the dot denotes the derivative with respect to time and 

where p 2  is minus the second derivative with respect to the variable y. 
Let us consider the propagator 

D(yf ,  yoto) = - to ) ( [@(y ,  t ) ,  @ ( y o ,  rO)l) (21) 
which describes the in-plane fluctuations of the system in the presence of a coherent 
state characterised by cp. The harmonic approximation for D follows then from the 
equations of motion (17 )  and (18):  

a ( y t , y o t o )  =2JmaHs~(y-yo)S(t-to)-(2Jma)2S(S+1)HsH~D(yt, yoto) .  (22) 
It is important to realise that Hs and Ha do not commute a priori. Indeed, for an 

arbitrary solution cp of the static sine-Gordon equation ( l l) ,  the commutator is 

[ H,, H e ]  = -2[  (cp’)* + cp‘cp”’]. (23)  
If  commutator (23) is different from zero, there is no set of eigenfunctions which is 
common to both Hamiltonian operators (19) and (20). Therefore, no complete set 
with appropriate quantum numbers can be found which diagonalises both. If one 
expands the @ ( y )  field in a complete set belonging to one of the two Hamiltonian 
operators, it then follows from (22) that these fluctuations will decay. They have a 
self-energy, even in the harmonic approximation, with an imaginary part indicating 
the lifetime of the excitation. In order that the solution of the sine-Gordon equation 
(1 1) has the meaning of a coherent state in the quantum system the spectrum of HsH, 
has to be non-negative. Indeed, if it has a negative part it means that the quantum 
fluctuations grow in time and will destroy the coherence of the state. The non-negative 
spectrum of HsH,, however, is not sufficient to always ensure the coherence as we 
shall see in the next section. 

3. Static solutions and their quantum fluctuations 

The spectrum of H 2  (14) is important for the stability of the coherent states. Before 
we study the quantum fluctuations resulting from H 2  it is useful to mention briefly 
the solutions of ( 1  1) which have been studied by many authors (Scott 1969). Once 
the solutions are given we derive the operators Hs and H ,  which govern the quantum 
fluctuation around the profile. How the spectrum of Hs and H ,  influences the stability 
and coherence of the profile will be shown first for the infinite chain solution of ( 1  1). 
After that we discuss the coherence and stability of the solutions of ( 1  1) which are 
subjected to the periodic boundary conditions appropriate for a chain with a finite 
length L. 

3.1. The solutions of the static sine-Gordon equation 

A way to classify the solutions of ( 1 1 )  is to consider the first integral 

(cp‘)* = 4 sin2((p/2) + c 
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( c  is an integration constant) that can take all real values greater than -4.  If an analogy 
with the pendulum (Scott 1969) is made then the solutions for which c is negative 
correspond to oscillations (thus the spatial evolution of cp will be a turn to the left 
followed by a turn to the right and  so on) and  the solutions for which c is positive 
correspond to rotations (thus the spatial evolution of cp will be a turn to the right over 
27r followed by the same turn). The solutions with c negative will not be considered 
because it is known that they are unstable against small fluctuations (Giachetti et a1 
1984). For c positive ( 2 4 )  can be integrated giving 

~ ( y - y o ) = k [ F ( c p 0 / 2 + . i r / 2 ,  k ) - F ( ~ / 2 +  r / 2 ,  k ) l  (25 )  

where F is the elliptic integral of the first kind and  k is the modulus, yo  is an  integration 
constant and  cpo is the value of cp in yo .  The periodicity of F is 2 K ,  where K is the 
complete elliptic integral of the first kind (Abramowitz and  Stegun 1964) and k is 
related to c for c > 0 by 

(26 )  

The solution (25 )  is periodic in the variable y with a period of 2kK. If a chain of 
length L =  Na contains n kinks then the number of kinks is equal to the chain length 
divided by the kink length (i.e. the period of the solution in the variable x = y / m )  

k = I / (  1 + ~ / 4 ) " ~ .  

n = mL/2kK.  (27 )  

The kink density (being the number of links divided by the number of magnetic ions) 
is easily derived from (27 )  and is inversely proportional to the kink period 2kK.  
Because K is a monotonic function of k we have plotted in figure 1 the kink density 
times ( m a ) - ' ,  which is a universal quantity in our approach, in terms of the modulus 
k. It is seen that for k = 1 ,  the period of the kink becomes infinite, leading to zero 

1.5 

1.c 

5 

0.5 

0 

I 

0.5 1 
k 

Figure 1. The period of an array of kinks is in an unique way related to its modulus k. 
The number of kinks ( n )  plotted against the number of magnetic sites ( N )  is the kink 
density n / N .  In the figure the kink density s is expressed in units ( m a ) - '  and the modulus 
k is given as a function of this dimensionless quantity. The low density limit corresponds 
to k = 1 ,  i.e. one kink in an infinite chain. 
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density, or equivalently to one kink in an infinite chain. We will refer to this situation 
as the low density limit. For k a few per cent smaller than 1 the density rapidly 
increases. In the remainder of the paper we will use the modulus k as a measure for 
the kink density. For k = 1 ( c  = 0) solution (25) reduces to the well known single-kink 
solution: 

(28) cp = 4 tan-' exp[ * ( y - y o ) ] .  

For a general k we obtain the following relation 

sin2(cp/2) =cn2(z)  = I -sn2(z) (29) 

where sn and cn are respectively the sine and cosine amplitude function. Together 
with dn they are the three basic Jacobian elliptic functions. Their argument z is related 
to Y by 

z=(y -yo) /k -F(cp0 /2+  1 ~ 1 2 ,  k ) .  (30) 

Using the solution (25) together with (26) and (27) and imposing the boundary 
condition that the chain will contain an integer number of kinks the energy per kink 
of the static structure follows from Ho.  Figure 2 shows this energy as a function of 
the modulus k. This energy is of course identical to the energy of sine-Gordon kinks 
(Giachetti et a1 1984, Sutherland 1973, Gupta and Sutherland 1976) provided one uses 
the correct parametrisation. The solutions of ( 1  1 )  are now characterised by the modulus 
k, which is directly related to the kink density. The question of whether for all densities 
or for the corresponding moduli a profile can be found which is stable has to be 
considered next. 

0 
L 

0.5 1. 
k 

Figure 2. The energy E L  of a kink divided by the energy E ,  of a kink in the low density 
limit ( k  = 1) is given as a function of the kink modulus k. 
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3.2. The harmonic spectrum 

The operator HQ (20) can be written in terms of the sine amplitude function of 
modulus k 

He= -(1/2k2)[d2/dz2+ k 2 ( l  - 2  sn2(z))]. (31) 

This is the linear operator of a generalised Lami equation with index 1 (Whittaker 
and Watson 1935). Imposing periodic boundary conditions on the solutions of 

Ha* = e.* (32) 

the spectrum e. has been calculated by Sutherland (1973). It has two branches, 
separated by a gap at the first Brillouin zone. It should be noted that this zone is 
induced by the periodic array of kinks. For all the values of the modulus k given by 
(27) the spectrum of e. is non-negative. The operator Hs can also be written in terms 
of the sine amplitude function 

Hs = - (1 /2k2)[d2/dz2+k2+4-t jk2-6k2 sn’(z)]. (33) 
This is again the linear operator of a generalised LamC equation (with index 2 now). 
The spectrum es generated by the eigenvalue problem 

HsV = esV (34) 
is not known analytically for arbitrary k. It can be calculated because the eigenfunctions 
are known. In figure 3 we have plotted one period of p and the corresponding potentials 
V .  and V.  for the same period. (In V, and Vs the line indicates the lowest eigenvalue 
of (32) and (34). The calculation of this eigenvalue is performed at the end of this 
section.) Before we discuss the general case ( k  f 1 )  we consider the low density limit 
( k  = 1 ) .  

-K 0 K 
(y -yo )Ik 

Figure 3. For the modulus k = 0.707 and 6 = 7 is shown ( a )  the profile of a kink (i.e. one 
period of the array) ( b )  the potential V, for the in-plane fluctuations, and (c )  the potential 
V, for the out-of-plane fluctuations. 
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3.2.1. The spectrum for a single ( k =  1 )  kink. The H ,  and Hs transform to expressions 
which are familiar from the classical stability analysis of the problem (Magyari and 
Thomas 1982, 1983, 1984, Kumar 1982, Liebmann er a1 1983) and also from the study 
of the thermodynamical properties of the classical spin chain in which out-of-plane 
components are taken into account (Fogedby er al 1983, 1984, 1985), 

H, ,  = ; p ’ + f ( l - 2  sech2(y)) ( 3 5 )  

H s l  = i p ’ + i (  1 + 6 - 6 sech2(y)). ( 3 6 )  

The eigenspectrum of ( 3 5 )  is well known: it has a bound state with eigenvalue zero 
and a wavefunction proportional to sech(y) and a continuum starting at 4. The 
eigenfunctions and the spectrum of H s  are also well known (Wada and Schrieffer 
1978, Wada and Ishiuchi 1982). The Hamiltonian ( 3 6 )  has two bound states, the 
translation mode and the tilting mode (denoted by the index 0, 1 )  with eigenvalue 
( 6  - 3 ) / 2  and 6 / 2  and with wavefunction sech2(y) and sech(y) tanh(y). The continuum 
of ( 3 6 )  starts at i( 1 + 6)  and the wavefunctions are denoted by their wavenumber k 
(not to be confused with the modulus k which is equal to 1 in this context). 

and S relies on the quantum numbers 
( i  = 0, 1 ,  k, . . .) of the complete set of eigenfunctions P , ( y )  of ( 3 6 ) .  Their completeness 
relation can be used to represent the Dirac delta function which originates from the 
continuum limit of ( 3 ) .  This leads to the following representation of the quantum fields 

Our quantum treatment of the fields 

@ ( y )  = qO~O(y)+qlPl(y)+zkqkP\I(k(y) (37 )  

s( y = POPO( y + PI * I ( y  ) + k P k  9 * k(  y ). (38)  

The p ,  and qt now have the usual commutation relations. In  terms of these new 
operators H’ takes the following form 

H 2  = J m a [ (  6 - 3 ) f p i +  6 / 2 p :  $ @ k (  1 + 6 4- k 2 ) p z ]  

+ J m a S ( S + 1 ) [ ~ q : + $ k q k ( 1 + k 2 ) q ; j .  

+ iq1 zkgl k + iz kk’qk’gkk’qt 1 
where 

glk = ( V l H ~ * k ) = - 6 k / 2 [ 3 ~ ( 1 +  k 2 ) ( 4 +  k2)]I” 

sech(7ik/2)(8/15+83/80k2) 

and 

&&‘=a(  1 + 6 + k 2 ) (  k - k ’ )  cosech[ 7i( k - k ’ ) / 2 ]  

x { ? - 3 k k ‘ +  k2k’’+ ( k  - k ‘ ) ’ [ ? + $ ( k 2 +  k‘I )  - k k ‘ ]  

+ $ ( k -  k ’ ) 4 } / [ ( l +  k 2 ) ( 1 +  k ” ) ( 4 +  k 2 ) ( 4 +  k ’ > ) ] .  (41 1 
Considering the part of the propagator ( 2 2 )  which describes the correlation between 

the go operator part of the @ ( y )  field one obtains after Fourier transformation 

Doo(w)  = - J m a ( 6  - 3 ) / w ’ .  ( 4 2 )  
This is precisely the response one should expect for a free particle with a mass 
proportional to 1 / ( 6  - 3 ) .  This analogy is only meaningful for 6 larger than 3, which 
is the high anisotropy and/or  low magnetic field case. In this case p o  is a conserved 
quantity, which can be interpreted as the momentum of the kink. It should be realised 
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that the fact that 40 is cyclic is due to the special relation between the wavefunction 
qn and the bound-state wavefunction of Ha,. Indeed '4'0 is proportional to the square 
of the bound-state wavefunction sech(y). Within this interpretation Jma( 6 - 3)ip,?, 
represents the kinetic energy of the kink. If 6 is smaller than 3 the kink can lower its 
energy by taking a finite value for p o .  This means that within the harmonic approxima- 
tion the expectation value of the S ( y )  field is no longer zero. I n  appendix 1 we will 
come back to this question. Further we will discuss the case 6 > 3. 

The autocorrelations of the q ,  and also of the qk parts can be calculated. To second 
order in the non-diagonal interaction coefficients one obtains for the tilting mode: 

D ,  , ( o = -JmaG / [ w ' - ( 2 ~ m a  )2  s ( s + 1 ) (:6 + c I , ( o ) ) ] 

cl I ( W )  = C,/g,k12/{[o/2JmaJS(S+ I l l 2 -  ek(ek + gk)} 

(43) 

where the self-energy (in the indicated approximation) is given by 

(44) 

and 

ek =+( 1 + 6 + k') 

g k  = 2/ T ( :  t 3 k2  + k4)/ (4 + 5 k2 + k4). 

The propagator & ( U )  takes an analogous form, with two self-energies, one for the 
decay into the tilting mode and another for the decay into a k' mode. This calculation 
shows that the spectrum of H,,H, ,  is non-negative. Therefore the quantum fluctuation 
does not destroy the coherence of the k = 1 kink. The lower bound of this spectrum 
is given by 

where Y is a square integrable function satisfying the boundary conditions. Taking 
for \I' a linear combination of the three bound states of H,, and H,, it is easy to show 
that (46) is satisfied for all values of 6. As explained in appendix 1 the kink can 
develop out-of-plane components to lower its energy when H,, has a negative eigen- 
value. This analysis leads to the conclusion that for a single (k  = 1) kink and for 6 
larger than 3 the profile can be described as a coherent state, which is free to move 
in the harmonic approximation. 

3.2.2. n e  harmonic spectrum for the k # 1 solution. It is well known that the spatial 
derivative of the kink profile is a solution of the eigenvalue problem (32) with eigenvalue 
zero. For the sine-Gordon system this is a direct consequence of the Goldstone theorem. 
The derivative cp' is proportional to dn(z) .  Direct verification shows that dn (z )  satisfies 
the generalised Lamb equation (31) and is a solution of (32) with ea = O .  This function 
is even, it has periodicity 2 K  in the variable z and it is nodeless: it is the eigenfunction 
of Hak with the lowest eigenvalue and as a consequence the spectrum of Ha, is 
non-negative. I t  is interesting to note that in the k = 1 limit dn (z )  as well as cn(z)  
become equal to sech(y) leading to the ground-state function of H,, with zero 
eigenvalue. Direct verification shows that cn(z) is a solution of (32) with eigenvalue 
+( 1 - k ' ) /  k'. Comparing this result with the exact calculation by Sutherland (1973) 
one sees that dn (z )  is the wavefunction of a state belonging to the middle of the 
Brillouin zone whereas cn(z)  is the wavefunction of a state that belongs to the same 
branch at the endpoint of the first Brillouin zone (the Brillouin zone introduced by 
the periodicity of the multi-kink profile). Knowing that the eigenfunctions of H,, are 
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combinations of elliptic functions it is possible to construct a nodeless wavefunction 
90 for Hsk: 

e,, = i{S - 1 - 2 /  k2[(4k4- 13k2+  13)”’- l]}. (48 )  

To is given in appendix 2.  In figure 4 we show the region in the (6, k )  plane where 
e,, is negative. The spectrum of the product operator HSkHGk is related to e,, as follows 

(qOHSkH@kqO) = eSO(qOHGkqO)* (49)  
Because the expectation value of HGk is positive for k # 1 the spectrum of the operator 
HSkHak will have a negative part if e,, is negative. For k = 1 one obtains for (48 )  the 
known result 

e s o = f ( 6 - 3 )  (50 )  
and 9, becomes sech2(y), the square of the eigenfunction of H,, with eigenvalue zero. 
Therefore (49 )  is no longer conclusive for the k = 1 case. Any eigenstate of Hsh which 
is a product of two eigenstates of HGk is an eigenstate of the product operator HSk 
Hak and this eigenstate is diagonal in the harmonic approximation (it has no interac- 
tions with the other harmonic fluctuations). For k = 1 the wavefunction sech2(y) is 
directly connected with the diagonal kinetic energy operator in H 2 .  For k # 1 the 
following wavefunction 

(51 )  q ,  = N cn( z )  dn( z )  
is an eigenstate of H S k :  

H , k q l  =$(a - 3 / k ’ ) q , .  (52 )  
The state belongs to the end of the first Brillouin zone and is a product of eigenfunctions 
of HQk. This leads to 

HSkHakqI = f ( 8 - 3 / k Z ) f ( l  - k 2 ) / k z q l .  (53 )  

0 0.5 1.0 
k 

Figure 4. The lowest eigenvalue of H,, is shown as a function of 6 and k. In the hatched 
region the eigenvalue is negative. For parameters belonging to the hatched region the 
multi-kink structure loses its coherence and is unstable. 



Quantum theory of planar kinks 2455 

In  figure 5 we have plotted this eigenvalue as a function of the modulus k for a large 
S value. The state with this eigenfunction (51) also becomes sech2(y) for k going to 
1. Combining (49) and (53) it is found that the out-of-plane fluctuations introduce a 
gap in the spectrum. The lowest energy of a fluctuation around a profile is larger than 
zero, except in the k = 1 limit and at k,: this is the modulus that corresponds with the 
critical density, where the multi-kink profile becomes unstable. This point will be 
clarified in the next section. 

3.3, The coherence and dynamics of planar kinks 

For the single kink ( k  = l), one knows that for S > 3 the planar character is stable 
against the creation of out-of-plane components, because the eigenvalues of Hs are 
positive. The lowest eigenvalue of the product operator HsH, is zero so that this 
spectrum has no direct consequences for the coherence of the kink. For the ( k  < 1) 
multi-kink structure the stability and coherence analysis coincide: for almost all k 
values H s k  and HSkHek have the same sign. Figure 4 divides the Sk plane into a 
region where stable multi-kink structures are possible (positive eigenvalues) and a 
region where the coherence is destroyed by quantum fluctuations. 

The out-of-plane quantum fluctuations generated by Hsk have a substantial influence 
on the spectrum of the harmonic modes in the presence of kinks. For k # 1 the lowest 
energy of these modes is no longer zero: the energy spectrum has a gap. This gap is 
proportional to expression (49) for the middle of the Brillouin zone. At the endpoint 
of the first Brillouin zone it is given by (53). The so-called Goldstone mode of zero 
frequency associated with the translational invariance of the system is no longer present: 
for exactly the same reasons as the magnon frequency in an anisotropic magnetic 
system with an external magnetic field has a gap for wavevector zero, the out-of-plane 
fluctuations induce a gap in the excitation spectrum around a multi-kink structure. 
The stability and dynamics of multi-kink structures are thus markedly different from 
the corresponding properties of a ( k  = 1) single kink. 

The statistical properties of such multi-kink structures (Giachetti er a1 1984), which 
are studied for the pure sine-Gordon system, give the impression that as far as the 
free energy is concerned the multi-kink structure appears as a relatively small perturba- 
tion to the single-kink contribution. In this respect we remark that the mean distance 
between two kinks can be estimated roughly using these statistical properties. However 

h 

Figure 5. The eigenvalue e,, of an exact eigenstate of HSAHaA is shown for S = 7 as a 
function of the modulus k. This eigenstate becomes the translation mode in the low density 
limit. 
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it cannot be excluded that the out-of-plane fluctuations also have a serious impact on 
the free energy. 

It should be noted that the difference in dynamical behaviour is originated by the 
spatial dependence of the potential V, (33). In the sine-Gordon system, the entire 
energy operator Hs (33) is a constant and then it is found that the thermodynamical 
properties, characterised by the kink density n, ,  arising from the so-called ideal gas 
picture and those arising from a strongly correlated multi-kink picture (Hammer and 
Shrauner 1984, Giachetti et a1 1984) are strikingly similar. As pointed out by Giachetti 
et a1 (1984) the correction due to the strongly correlated structure, i.e. the finite support, 
is of the same order of magnitude as the next order correction (in our formulation 
coming from H 3  and H4) to the ideal gas picture (Sasaki 1983, Fischer and Heber 
1985). We expect that the mean distance between two kinks still can be roughly 
estimated by the statistical properties of the sineGordon system. However it cannot 
be excluded that the out-of-plane fluctuations also have a serious impact on the free 
energy. 

4. Discussion and conclusions 

A crucial step in our calculation is the use of the Villain-Haldane representation, 
which corresponds to an operator expansion of the non-polynomial Hamiltonian in 
powers of [ S ( S +  I ) ] .  This expansion has been criticised by Mead and Papanicolaou 
(1982) for the ground state: it requires more terms in a [ S (  S + I ) ]  expansion than in 
a S 2  expansion. The difference in expansion parameters is related to the representation 
of the spin algebra, and it is known that one has to be careful in this respect, see e.g. 
Lindgard and Kowalski (1976). Indeed, if one considers the generator U ( 5 )  and if 
one uses the proposed expansion for S ( y )  (38) one obtains 

U = Z,p,a, (54) 

The quantity aj is well ldefined for the bound states ( j  = 0, l ) ,  but due to the fact that 
cp(y) takes a value different from zero at one of the boundaries, some regularisation 
procedure is necessary for the infinite chain. In our calculation we formally assumed 
that these coefficients are well defined. If one would try to calculate the transition 
probability between the state with a kink and a state with no kink, the numerical value 
of the coefficients would play a role. In order to obtain additional insight into this 
aspect, we have performed the same calculation using, like Swanson (1983), the 
Holstein-Primakoff transformation. In this case the generator is given by 

(56) 

The results of § 2 are recovered substituting S ( S +  1 )  by S2. The means that whatever 
representations one chooses, at a certain external field, it will be more favourable for 
the kink to have out-of-plane components different from zero. For the finite chain the 
boundary conditions of q j ( z )  ensure that ( 5 5 )  is always defined. 

U = (.rr/4)C, exp(icp,)S, - exp(-icp,)SL. 
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Another important point in our approach is the use of the continuum approximation. 
This approximation is legitimate if one can show that the solutions of the difference 
equation (10) are analytic functions of the site number. (10) can be written as a map, 
which has been studied (Aubry 1984). This map has, depending on the value of m, 
solutions with the required properties. A full analysis and exploitation of the solutions 
of (10) along these lines is out of the scope of this paper, but indicates that in these 
matters the continuum approximation has to be handled with care. 

In the assumption that the Villain representation and the continuum approximation 
lead to reliable results, the main conclusions can be summarised as follows. 

(i) A quantum mechanical treatment of the spin chain leads via a canonical 
transformation to the solutions of the static sine-Gordon equation as a tool to classify 
the excited states of the chain. 

(ii) In the transformed Hamiltonian each of the excited states acts as a vacuum 
containing a number of kinks with accompanying in-plane and  out-of-plane fluctu- 
ations. 

(iii) The propagator of the in-plane fluctuations cannot be diagonalised in the 
harmonic approximation. This is a consequence of the out-of-plane potential V,, 
which is usually considered to be constant. 

(iv) The stability limit for the low anisotropy or  high field, known from the classical 
approach, is recovered and  manifests itself now as a change in sign of the energy of 
the translation mode in the low density limit. 

(v) For increasing density, the translation mode becomes an oscillation, which can 
become soft signalling a density-dependent instability. 

(vi) The periodic array introduces gaps in the fluctuation spectrum at the endpoints 
of the Brillouin zone associated with the periodicity of the kinks. 

The model, which we consider, follows directly in the Villain representation and  
diverges considerably from the ideal gas picture (Currie et al 1980) which is a many-kink 
model based on single-kink properties of the low density limit. In our approach the 
kinks are interacting: this interaction requires that a chain consists of either kinks or 
anti-kinks. A mixture of both in the same chain is unstable at  the level of the harmonic 
fluctuations. It also is the interaction which requires that the kinks go on a periodic 
array: a chain with kinks at random positions can lower its energy by adapting the 
distances between the kinks. As shown by Sutherland (1973) for the sine-Gordon 
model the cross section between the kink and the linear excitation is also minimal in 
this case for periodic structures. The effect of higher-order terms H 3 ,  H 4 , .  . . , is not 
considered for k < 1. In the low density limit it is shown for similar models (Wada 
and Schrieffer 1978, Wada and  Ishuichi 1982) that the ballistic behaviour found in the 
harmonic approximation where the kink momentum is a constant of motion is changed 
in diffusive behaviour by the higher-order terms. 

The statistical mechanics needed to obtain an expression of the kink density as a 
function of temperature is not studied in this paper. However, if we assume that the 
out-of-plane components have only a minor effect on this relation, the sine-Gordon 
calculation (Giachetti et a1 1984) can be used. Then i t  can be concluded that the kink 
density for a periodic structure as a function of temperature is very similar to the 
analogous expression of the ideal gas model, at least for moderate kink densities. 
Therefore it will be very difficult to make a distinction between a model in which kinks 
behave as if they are quasi-free or a model in which they are confined to a periodic 
array on the basis of the kink density only, because this quantity seems quite insensitive 
to the choice of the model. 
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Appendix 1 

The question of what happens when S is almost equal or a little bit smaller than 3 
will now be discussed. With one kink in the chain our analysis indicates that S ( y )  is 
not zero on the average. Therefore it is better to restart the calculation, now with a 
more general canonical transformation that introduces a ‘c number’ s, value to the j t h  
lattice site. The generator of transformation, given in the Villain-Haldane representa- 
tion, is 

V = -iZ,@,s, (Al.1) 

with 

exp( - V)S:  exp( V) = Si - s,. (A1.2) 

Assuming that s, is relatively small, we obtain to second order in s, and in the continuum 
approximation the following expression for Ho:  

H o =  -N{JS(S+  l)+gFBH[S(S+ 1)]”2} 

+ J S ( S + l ) m a  I dy[4(9’)*+2 sin2((p/2)] 

+ Jma I d y [ f ( s ‘ ) * + ~ s ’ ( c ~ s ( ( p ) - ( ( p ’ ) ~ + S ) ] .  (A1.3) 

The extremalisation condition for Ho,  which is equivalent to the condition that H’ is 
identically zero, is then 

(1 -s2)cp”=sin((p) (A1.4) 
and 

- . s ”+(1 -2  ~ i n ’ ( ( p / 2 ) - ( ( p ’ ) ~ + ~ ) s  =o. (A1.5) 
Elementary bifurcation theory shows that a s # 0 solution exists for S = 3. For this 
value a non-trivial solution of (A1.5) is possible. The interpretation given to this 
phenomenon given in the semiclassical analysis is slightly different, because there s is 
strongly related to the classical velocity of the kink. In the quantum analysis it is 
found that for the one-kink system the shape of the kink has an out-of-plane component 
whose average is different from zero. Therefore a further analysis of the one-kink 
model firstly requires a precise calculation of the shape of the kink, because this shape 
determines the precise from of Hs and H a .  The spectrum of these operators will then 
determine the behaviour of the ‘new’ elementary excitations. 

Appendix 2 

The ground-state function of HSk can be constructed using the second derivative of 
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the square of the Jacobian elliptic function dn(z): 

dn2”(z) = 6 k 2  sn(z) dn2(z)+(2-4k2) dn2(z)+2(k2-  1 ) .  (A2.1) 

Then we write 

‘P = N(dn2(z )+R(k) ) .  (A2.2) 

The constant R(k)  is calculated in such a way that Y is an eigenfunction and N is 
the normalisation: 

(A2.3) R( k) = [(4k4 - 13k2 + 13)’”-4+ 2k2]/3. 

This choice of R avoids nodes and ‘P belongs to the eigenvalue 

- ( 1/2kZ){Y”+ [ k2( 1 - 6 )  + 4  - 6k2 sn’( z)]’P} 

= (1/2k2)[k2(1 - 6 ) + 2 - 2 ( 4 k 4 -  13k2+ 13)”2]’P. (A2.4) 
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